0.引言
隨著世界各國(guó)對(duì)環(huán)境保護(hù)的高度重視,人們對(duì)生活品質(zhì)的要求越來(lái)越高和各種高新技術(shù)產(chǎn)業(yè)的不斷發(fā)展,對(duì)涂層的性能要求也不斷提高。涂料產(chǎn)品的環(huán)保化、健康化、高性能化、多功能化和智能化發(fā)展已是社會(huì)發(fā)展必然之需求。但是,在涂料行業(yè)快速發(fā)展的今天,通過(guò)傳統(tǒng)樹(shù)脂合成方法或涂料配方設(shè)計(jì)來(lái)進(jìn)一步提升現(xiàn)有涂層的性能和發(fā)展新一代功能涂層的空間已越來(lái)越小。近10年來(lái),國(guó)內(nèi)外一系列研究表明,納米材料和納米技術(shù)的應(yīng)用可以突破傳統(tǒng)樹(shù)脂合成方法和涂料制備方法的技術(shù)瓶頸,為實(shí)現(xiàn)傳統(tǒng)涂層的高性能化和獲得新的功能涂層提供了可能。目前,國(guó)內(nèi)外主要圍繞新的樹(shù)脂合成方法、納米粒子的引入方式、涂層表面的納米結(jié)構(gòu)設(shè)計(jì)與構(gòu)建等方面開(kāi)展了納米結(jié)構(gòu)涂層的制備研究,并已取得了一定的進(jìn)展。
1.利用新的樹(shù)脂合成方法獲得新的成膜物
樹(shù)脂作為涂層的關(guān)鍵材料———成膜物質(zhì),直接影響涂層的物理、化學(xué)、機(jī)械性能和涂層的表面微觀結(jié)構(gòu)等。為此,近年來(lái),人們?cè)噲D通過(guò)探索新的樹(shù)脂合成方法以獲得新的樹(shù)脂成膜物。例如,乳液聚合廣泛用于合成樹(shù)脂、涂料、塑料、橡膠和膠粘劑工業(yè)等。但常規(guī)乳液聚合一般需要使用大量的有機(jī)小分子乳化劑先在水相中形成膠束,然后通過(guò)引發(fā)劑引發(fā)溶解在水中的少量單體,產(chǎn)生低聚物自由基,這些自由基進(jìn)入乳化劑膠束中進(jìn)行鏈增長(zhǎng)、鏈終止,乳膠粒子通過(guò)表面乳化劑分子的靜電相斥和(或)空間位阻作用而穩(wěn)定。但有機(jī)小分子乳化劑最終都?xì)埩粼跇?shù)脂中,對(duì)涂層的性能產(chǎn)生很大的負(fù)面影響(如耐污性和耐候性差等)。為此,近年來(lái)人們借助輔助單體,以酸-堿為驅(qū)動(dòng)力,獲得了新型無(wú)皂乳液聚合方法。例如,Armes等[1-3]利用納米SiO2粒子表面硅羥基呈弱酸性的特點(diǎn),在單體聚合中加入少量含堿性基團(tuán)的輔助單體,在聚合過(guò)程中,納米SiO2粒子通過(guò)酸-堿相互作用吸附到單體液滴或聚合物乳膠粒子表面,起乳化劑作用,整個(gè)過(guò)程中無(wú)需加入任何有機(jī)小分子乳化劑,獲得了丙烯酸樹(shù)脂的無(wú)皂乳液聚合方法。作者[4-6]也以酸-堿、靜電或氫鍵為驅(qū)動(dòng)力,獲得了以納米SiO2粒子為“乳化劑”的丙烯酸樹(shù)脂的無(wú)皂乳液聚合方法。世界上最大的化工公司之一———德國(guó)BASF公司[7]將這種納米SiO2粒子穩(wěn)定的丙烯酸樹(shù)脂無(wú)皂乳液進(jìn)行工業(yè)化應(yīng)用后,發(fā)現(xiàn)涂層的耐污性、耐水性、耐久性等都有顯著提高。Schmid等[8]也對(duì)相關(guān)乳液的成膜性能進(jìn)行了系統(tǒng)研究。作者在研究納米SiO2/苯丙復(fù)合乳液成膜性能時(shí),還發(fā)現(xiàn)了乳膠膜的光子晶體特性[9],通過(guò)本方法,可以獲得不需要任何顏料的色彩絢麗的結(jié)構(gòu)色涂膜。Koukiotis等[10]通過(guò)微乳液聚合方法制備了高度透明的MMA/BA共聚物微乳液,固含量與普通的聚合物乳液相當(dāng)。他們發(fā)現(xiàn)制備的乳液具有非常奇特的性質(zhì),不但制備的漆膜優(yōu)異,而且最低成膜溫度顯著下降,為新型水性納米樹(shù)脂的開(kāi)發(fā)奠定了良好的基礎(chǔ)。另外,設(shè)計(jì)合成具有特定支化結(jié)構(gòu)的納米聚合物也是目前樹(shù)脂研究的一個(gè)重要方向。據(jù)報(bào)道[11],超支化聚合物在相同相對(duì)分子質(zhì)量的前提下具有較線型聚合物更低的黏度,而樹(shù)枝狀聚合物的黏度完全不符合現(xiàn)有的黏度-相對(duì)分子質(zhì)量規(guī)律,在納米尺度范圍內(nèi)其黏度異乎尋常的降低,如圖1所示,這為新型涂層用樹(shù)脂的合成提供了巨大的潛在機(jī)會(huì)。
盡管樹(shù)脂的納米化技術(shù)無(wú)論從理論上還是制備上均有了良好的開(kāi)始,但納米樹(shù)脂的新性能還不能在理論上進(jìn)行有效預(yù)測(cè),而且制備上也存在許多問(wèn)題沒(méi)有得到有效的解決,如在采用無(wú)機(jī)納米粒子穩(wěn)定的乳液聚合方面,如何實(shí)現(xiàn)在納米尺度范圍內(nèi)的聚合物粒子控制;在微乳液聚合方面,如何進(jìn)一步提高固含量及降低乳化劑含量;在樹(shù)枝狀納米樹(shù)脂的制備方面,如何實(shí)現(xiàn)其結(jié)構(gòu)可控和宏量制備等,都需要從理論及方法上進(jìn)行創(chuàng)新,突破目前納米樹(shù)脂設(shè)計(jì)和制備技術(shù)的瓶頸問(wèn)題,為新一代高性能樹(shù)脂的制備提供理論及技術(shù)支撐。
2.直接引入無(wú)機(jī)納米粒子以改善涂層性能
無(wú)機(jī)納米粒子可以通過(guò)共混法、原位生成法、自組裝方法等方式引入到樹(shù)脂及其涂料涂層中。不同的納米粒子賦予涂層不同的性能,如:高硬度及高耐磨耐刮傷性(SiO2、Al2O3、ZrO2等)、UV屏蔽性(ZnO、TiO2、CeO2等)、抗菌性(Ag、ZnO、TiO2等)、導(dǎo)電性(碳納米管、ATO等)、阻隔性(勃姆石、粘土等)等。Zhou等[12]利用納米SiO2粒子改善了雙組分丙烯酸酯聚氨酯和聚酯聚氨酯涂層的硬度和耐刮傷性。Bauer等[13]將納米SiO2或Al2O3粒子改性后加入到紫外光固化丙烯酸酯涂料中,涂層的耐刮傷性得到了顯著提高。Harreld等[14]利用甲基丙烯酰氧基丙基三甲氧基硅烷與甲基丙烯酸甲酯(MMA)聚合獲得的共聚物,制備了超高硬度、低收縮率的透明雜化涂層。Xiong等[15]采用前驅(qū)體水解法獲得的TiO2溶膠與官能化聚丙烯酸酯復(fù)合獲得了高折光指數(shù)、高紫外光屏蔽的透明有機(jī)-無(wú)機(jī)雜化涂層。Yuwono等[16]以異丙氧基鈦為前驅(qū)體,制備了TiO2納米晶-PMMA非線性光學(xué)涂層。Yeh等[17]將粘土用表面活性劑插層后,與PMMA、聚乙氧基苯胺等聚合物復(fù)合,大大改善了這些聚合物涂層對(duì)鋼材的防腐蝕保護(hù)。Kumar等[18]利_______用植物油醇酸樹(shù)脂自動(dòng)氧化干燥成膜過(guò)程中產(chǎn)生的自由基為還原劑,安息香酸銀為前驅(qū)體,獲得了納米Ag粒子原位生成的抗菌涂層,如圖2所示。該方法工藝簡(jiǎn)便,綠色環(huán)保,商業(yè)應(yīng)用價(jià)值高。最近,Sangermano等[19]將稀土離子摻雜的LaF3納米粒子與環(huán)氧涂料復(fù)合,制備的納米結(jié)構(gòu)涂料可用于激光波導(dǎo)直接寫(xiě)入領(lǐng)域。
這方面的研究工作相對(duì)較多,但由于樹(shù)脂及其涂料體系非常復(fù)雜,體系既可以是水性的,也可以是溶劑型的,還可以是無(wú)溶劑的(粉末涂料、UV固化);樹(shù)脂分子鏈既可以是極性的也可以是非極性的。尤其是,迫于環(huán)保壓力,樹(shù)脂及其涂料水性化也成為涂料工業(yè)的主要發(fā)展趨勢(shì),無(wú)機(jī)納米粒子的引入既要考慮其在水性體系中的分散穩(wěn)定性,更要注意固化成膜后與樹(shù)脂涂層分子鏈的相互作用。因此,需要探索適用于不同樹(shù)脂及其涂料涂層體系的無(wú)機(jī)納米粒子導(dǎo)入新方法,建立無(wú)機(jī)納米粒子在不同樹(shù)脂及其涂料涂層中的普適性分散穩(wěn)定控制方法,發(fā)展無(wú)機(jī)納米粒子的表面設(shè)計(jì)、穩(wěn)定分散理論。
3.表面微納結(jié)構(gòu)構(gòu)建以獲得功能涂層
利用高分子鏈段在溶劑中的溶解度差異可以獲得具有特殊結(jié)構(gòu)的表面。例如,Erbil等[20]將聚丙烯(PP)溶解于對(duì)二甲苯/丁酮混合溶劑中,由于對(duì)二甲苯是PP的良溶劑,丁酮是非溶劑,PP鏈段在溶劑中分布不均勻。將這種溶液涂覆于玻璃板上之后,置于真空條件下除去溶劑,可制得多孔結(jié)構(gòu)的PP薄膜,表面水接觸角可達(dá)155°。同樣,利用嵌段聚合物的不同鏈段在同一溶劑中的差異也可制得超疏水表面。Xie等[21]利用PMMA-PP-PMMA三嵌段共聚物的鏈段在溶劑二甲基甲酰胺(DMF)中的溶解度的差異而形成以聚丙烯鏈段為內(nèi)核的膠束,這種結(jié)構(gòu)與荷葉表面的乳突相似,同樣具有二級(jí)結(jié)構(gòu),DMF揮發(fā)后,膠束結(jié)構(gòu)能完好堆積在表面,形成超疏水表面,與水接觸角可達(dá)160°。Yabu等[22]將由PMMA-聚甲基丙烯酸全氟辛酯-PMMA的三嵌段共聚物溶解于AK-2559溶劑(CF3CF3CHCl2/CClF2CHClF混合溶劑)中,溶液涂膜后置于濕度為40%~60%的潮濕空氣環(huán)境中,發(fā)生自組裝行為產(chǎn)生蜂巢結(jié)構(gòu),該蜂巢結(jié)構(gòu)經(jīng)過(guò)剝離處理后形成有序的針墊結(jié)構(gòu),烷氧基硅烷基)丙基氨甲酰胺基]-6-甲基-4-氫吡啶酮,該物質(zhì)在乙酸乙酯中通過(guò)氫鍵可形成兩端有三乙烷氧基團(tuán)的棒狀二聚體分子,通過(guò)水解形成Si—O—Si鍵交聯(lián)的鳥(niǎo)巢結(jié)構(gòu),經(jīng)低表面能物質(zhì)修飾后形成了超疏水表面。Zhao等[24]制備了聚苯乙烯-聚二甲基硅氧烷(PDMS)嵌段共聚物膠束溶液,通過(guò)氣致相分離的方法使PDMS鏈段在表面富集,從而得到了超疏水性特性。Sun等[25]等將聚異丙基丙烯酰胺作為低表面能物質(zhì)修飾粗糙表面,當(dāng)溫度從25℃升至40℃時(shí),原有的分子內(nèi)氫鍵轉(zhuǎn)化為分子間氫鍵,高分子鏈段發(fā)生扭曲重排,疏水鏈段趨于表面,平整表面接觸角從63.5°轉(zhuǎn)變?yōu)?3.2°,而粗糙表面接觸角從0°轉(zhuǎn)變?yōu)?49.3°,見(jiàn)圖3。
最近,美國(guó)華盛頓大學(xué)Wooley教授等[26]和北達(dá)科他大學(xué)Webster教授等[27]在美國(guó)海軍裝備部的資助下,分別合成了超支化含氟聚合物-聚乙二醇網(wǎng)狀結(jié)構(gòu)樹(shù)脂和PDMS-聚氨酯嵌段共聚物樹(shù)脂,該樹(shù)脂干燥成膜時(shí)發(fā)生相分離,表面形成納米級(jí)的凹凸形貌,見(jiàn)圖4。初步研究表明,這種涂層具有優(yōu)良的抗血清蛋白、血凝素和脂多糖附著性能。
其他構(gòu)筑具有微納結(jié)構(gòu)形貌表面的方法包括:平板印刷、激光刻蝕、電沉積或化學(xué)沉積法、水熱法、溶膠-凝膠法、碳納米管法、靜電紡絲法、模板法等。但這些方法由于所需條件苛刻、設(shè)備昂貴難以應(yīng)用于樹(shù)脂涂層的微納結(jié)構(gòu)構(gòu)建上。目前,最有可能的仍是高分子相分離法或自組裝法,但迄今為止,只用于小面積涂層的制備,得到的微結(jié)構(gòu)表面遇高溫熔化,形貌易于被破壞,對(duì)形成微納結(jié)構(gòu)形貌的聚合物組成和結(jié)構(gòu)以及形成條件有非常高的特殊要求,所用的溶劑在涂料工業(yè)中禁止使用,所用的聚合物綜合性能差,難以作為涂料的成膜物質(zhì)。因此,需要以具有實(shí)用價(jià)值的聚合物為成膜樹(shù)脂,探討相應(yīng)涂料體系的微納結(jié)構(gòu)涂層的構(gòu)建方法,尤其需要發(fā)展表面和體相均具備納米結(jié)構(gòu)的涂層的宏量可控制備方法,為新一代功能性涂層的開(kāi)發(fā)提供理論指導(dǎo)。
4.結(jié)語(yǔ)
總的來(lái)說(shuō),納米材料與納米技術(shù)在涂料行業(yè)中的應(yīng)用還處于起步研究階段,國(guó)內(nèi)外的研究基本處于同一水平。納米材料和納米技術(shù)要想真正在樹(shù)脂涂層中實(shí)現(xiàn)大規(guī)模應(yīng)用還必須解決下列關(guān)鍵科學(xué)和技術(shù)問(wèn)題:(1)具有納米尺度及效應(yīng)的新型樹(shù)脂設(shè)計(jì)合成方法及其成膜機(jī)理,發(fā)展結(jié)構(gòu)和性能可控的高檔樹(shù)脂合成方法,設(shè)計(jì)合成新型樹(shù)脂成膜物;(2)認(rèn)識(shí)和總結(jié)無(wú)機(jī)納米粒子的表面設(shè)計(jì)及其在不同的樹(shù)脂及其涂料涂層體系的分散穩(wěn)定性一般規(guī)律,提出其均勻穩(wěn)定分散的普適性控制方法;(3)揭示納米結(jié)構(gòu)涂層的構(gòu)建規(guī)律和設(shè)計(jì)原理及其微結(jié)構(gòu)與性能相關(guān)性,闡明其形成機(jī)理,發(fā)展具有實(shí)用價(jià)值的納米結(jié)構(gòu)涂層宏量制備技術(shù),尤其是具有體相納米結(jié)構(gòu)涂層的宏量制備技術(shù);(4)揭示納米結(jié)構(gòu)涂層的微結(jié)構(gòu)與性能的相關(guān)性及其服役條件下微結(jié)構(gòu)和性能的演變規(guī)律,建立納米結(jié)構(gòu)涂層的性能評(píng)價(jià)方法和穩(wěn)定控制方法等。我們深信,納米結(jié)構(gòu)涂層一定會(huì)成為未來(lái)甚至近期涂料行業(yè)發(fā)展的科技基石,為新材料的發(fā)展作出重要貢獻(xiàn)。
"歡迎大家轉(zhuǎn)摘!轉(zhuǎn)載須注明中國(guó)建筑金屬結(jié)構(gòu)協(xié)會(huì)建筑
鋼結(jié)構(gòu)網(wǎng)(www.fsled.com.cn)謝謝合作!"